Loading...
Machine Learning and Event Analytics 2018-06-15T12:20:22+00:00
Assure1 - Analytics

Machine Learning and Event Analytics

Machine Learning and Event Analytics Provide Intelligent Insights for Better Business Decisions

Assure1 understands the patterns of behavior of operational data because it captures information across service and event data from all direct and indirect sources in your environment.

Federos’ machine learning and event analytics provides sophisticated data to help customers quickly and accurately pinpoint, analyze and resolve the root cause of service impacting events. This eliminates and suppresses massive amounts of noise to ensure your IT operations always acts correctly against incidents that typically result in impacted services. Assure1 aligns events with their appropriate corresponding analytics models and machine learning to generate the best course of action to improve operational efficiencies.

Key Capabilities

Assure1 - Heterogenous Data Ingestion

Heterogenous Data Ingestion at Scale

Using machine learning and event analytics, Assure1 takes in large amounts of historical and real-time event data at large scale and provides the ability to search and analyze across all faults to realize specific operational efficiencies.

Assure1 with machine learning and event analytics leverages industry standard machine learning algorithms with special data filters to normalize data and ensure correct patterns are fed into the machine learning engine. Using these data streams, the solution then detects anomalies, such as temporal deviations, statistical rarities and unusual behaviors, to generate a singular root causal event in the Assure1 event console. Root causal events contain suppression patterns that filter out noise to improve NOC operators rate of predictability to resolve problems versus responding to a storm of event alarms.

Assure1 - Topology and Relationship Data

Three Use Cases Drive Better Outcomes

Machine learning and event analytics rounds out the three-prong Assure1 strategy for providing customers with industry leading root cause analysis. Federos delivers three types of RCA, including:

  • Topological RCA by leveraging physical and virtual topology discovery,
  • Machine learning RCA that learns from patterns and does not require topology, and
  • Human based RCA where operators can flag noise fields and tie them to known root causes.

Federos is providing machine learning and event analytics for three common use cases:

  • Event Storms and Dips: Driven by event storms (or sudden dips in events) that are caused by a singular root cause, for example: cut fiber and element management systems disconnect.
  • Abnormal Behavior: Driven by learning the noise fields of every device, down to ports on switches. The abnormal behavior rule generates and escalates events based on anomalies not common to that port or device. For example, a core router port that has previously been stable but suddenly begins having issues, would be flagged and escalated for analysis.
  • NOC Operational Performance: Looks at how different types are events are handled and learns how each kind of event is managed in the NOC. Based on this information, the solution sends an alert when an event is abnormally handled. For example, if a NOC operator acknowledges a downed port by adding a journal entry and then clearing the alarm, that incident would be “learned” by Assure1 as normal for that type of event. In which case, in the future if someone accidentally cleared an event without working on it, that action would raise and alarm.

Assure1 and the Event Analytics module support physical and virtual devices. By providing the consolidated data in a single source of the truth, it drives relevant insights that allow operations to continually improve services and business outcomes.

Key Benefits

  • Cuts through data noise with unprecedented accuracy

  • Uncovers previously unseen anomalies and root causes from a high volume of faults

  • Ingests any adjacent data source for deeper learning and pattern matching, for example: other element management systems data and fault data from other fault management systems

  • Improved service quality and customer experience

  • Open rules that can be customer modified to find and identify unique environment patterns and develop those patterns into unique rules; no services required

  • Event analytics can be pre-trained by ingesting old event history, allowing for day-1 benefits

  • Embedded solution extends the value of Assure1 to customers and can be downloaded and deployed into existing Assure1 environments

Assure1- Key Benefits - Analytics
See how Oracle benefited from Analytics
Download Case Study

Learn more about the advantages of Assure1 Machine Learning and Event Analytics.

Download Data Sheet

OTHER FEATURES

Assure1 - Fault Management

Fault Management

The Manager of Managers and Single Operational Dashboard

Assure1 - Performance Management

Performance Management

Predict Outages and Solve Performance Issues Faster

Assure1 - Service Management

Service Management

Simplify and Automate Service Management

Assure1 - Topology

Topology

Topology Map of Your Infrastructure and Services

Ready to simplify your operations environment and retire legacy systems?
Contact Federos today.

Schedule a Demo